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Statistical engineering as proposed by Hoerl and Snee (2010a15. Hoerl , R. W., Snee , R. D. (2010a).
Closing the gap . Quality Progress ,43 (5): 52 -53.

View all references) aims to develop a discipline devoted to better understanding how to use statistical
tools to support project goals. Existing examples abound but more work is needed. We discuss the use of
statistical engineering to improve problem solving—that is, reducing variation in processes—and note
that this requires a series of empirical investigations where we should use information gained to help plan
subsequent investigations. The systematic use of prior/existing information, especially baseline
information, in problem solving is illustrated using a crossbar dimension case study. The baseline results
are used to help plan and analyze all subsequent investigations both when looking for a dominant cause
of the variation and when assessing a possible solution. The effective use of prior statistical information
and the consequences of its use in the variation reduction context are not commonly taught and thus
opportunities for more efficient problem solving are lost.
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Closing the gap . Quality Progress ,43 (5):52—-53.

View all references) aims to develop a discipline devoted to better understanding how to use statistical
tools to support project goals. Existing examples abound but more work is needed. We discuss the use of
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that this requires a series of empirical investigations where we should use information gained to help plan
subsequent investigations. The systematic use of prior/existing information, especially baseline
information, in problem solving is illustrated using a crossbar dimension case study. The baseline results
are used to help plan and analyze all subsequent investigations both when looking for a dominant cause
of the variation and when assessing a possible solution. The effective use of prior statistical information
and the consequences of its use in the variation reduction context are not commonly taught and thus
opportunities for more efficient problem solving are lost.
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Hoerl and Snee (2010a, 2010b) proposed a new discipline they termed statistical engineering (SE). They
defined SE as “the study of how to best use statistical concepts, methods and tools, and integrate them
with IT and other relevant sciences to generate improved results” (2010a, p. 52).

This broad definition suggests that students of SE should look for better (if not the best) ways to apply
statistical methods. See also the panel discussion in Anderson-Cook and Lu (2012al. Anderson-Cook ,
C.,Lu, L., Eds. (2012a). Statistical engineering—Forming the foundations . Quality Engineering , 24 :
110-132.

[Taylor & Francis Online], [Web of Science ®]

View all references, 2012b2. Anderson-Cook , C., Lu, L., Eds. ( 2012b ). Statistical engineering—
Roles for statisticians and the path forward . Quality Engineering , 24 : 133 — 152 .

[Taylor & Francis Online], [Web of Science ®]

View all references) for more examples and opinions about SE.

Process improvement is an important and rich context in which to think about SE and its development
and consequences. Hoerl and Snee (200114. Hoerl , R., Snee , R. ( 2001 ). Statistical Thinking:
Improving Business Performance. Pacific Grove , CA : Duxbury .

http://www tandfonline.com/doi/full/10.1080/08982112.2013.846069 5/31
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View all reforences) provided the foundation for process improvement through the principles of
statistical thinking:

1. All work ocours in a system of intenconnected processes, where a process is a chain of activities

2, Vanation, which gives nise to uncertamty, exists in all processes.

3. Understanding and reducing variation are keys to success.

We could quibble that some processes can be improved by shiftmg the average (e.g., increasing the yield
manhummlprm},butexpmemahushumthﬂﬂummamplunppMsmmvanm:lun

and hence make improvemenis. To kighlight the importance, Neave {199020. Neave , H. R. { 1990 ). The
Deming Dimension Knoxville , TN : SPC Press Inc.

View all reforences, p. 57) atinbuted the following quots to Demmg: “Tf T could reduce my message to
management o just a few words, I'd say it all hax to do with reducing variation. ™

For mass-produced components and assemblies, reducing variation can simultaneously lower overall
cost, improve function, and increase customer satisfaction with the product. Excess variation can have
dire conzequences, leading to serap and rework, the need for added inspeciion, customer returns,
mnpamrment of function, and a reduction m reliability and durability.

50 lst us concentrate on how SE can help with variation reduction. Juran and Gryna (198017. Juran , J.
M. , Gryna , F. M. ( 1980 ). Quality Planning and Analysis. , 2nd ed . New York : McGraw-Hill .

View all references) providad the basic two-step algorithm for understanding and reducing variation
{Principle 3} via the diagnostic and remedial journey shown in Figure 1.
FIGURE 1 Diagnostic and remedial journey. {Color figure available cnline.)

Problem: Excess variation

i, Diagnostic Journey

Cause: ldentify the important sources of variation

l Remedial Journey

Remedy: Eliminate or reduce the effect of the identified LtlLJ\L{H}

W:thmsmslgma(nmyfuglelm Bmyfugla F.W. , TIL { 1999 ). fiplementing Six Sigma: Smarter
Solwiions Using Statistical Methods New York : John Wilﬁji &Sons .

View all references), define—measure—analyze—improve—control (MAIC) fleshes out this algorithm.
There are many other such expansions. For improving a medium- to high-volume manufacturing
processes, Steiner and MacKay (200524. Steiner , 8. H. , MacKay , R. I. { 2005 ). Statistical
Engineering: An Algorithm for Redurcing Fmaymmmmm,m:ﬁsq
Quality Press .

View a1l refaences) developed the version shown in Figure 2 that we apply to the case study given later
in this article.

FIGURE 2 Statistical engineerimg (StatEng) variation reduction algorithm.
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Most recently there is the general concept of SE a5 introduced by Hoer] and Snee (2010a15. Hoerl . B.
W., Snee , R D. (20104 ). Closing the gap . Quality Progress 43 (5 ). 52 -53.

View all refixences, 2010016, Hoerl , B. W, , 8nee, R D. ( 2010b ). Further explanation: Clarifying
pomis about statistical engmeermg . Ouality Progress , 43 (12 ): 68-72.

View all refaences) and diecussed eerlier m thie article. Stemer and MacKay (200524, Stemer, 8. H. ,
MacKay , R. 1. { 2005 ). Statistical Ergineering: An Algorithm for Reducing Variaiion in Marufacturing
Processes Milwaukee , W1 : ASQ Quality Press .

To lmmit possibls confusion, we use the acronym StatEng fo refer to this algorithm and its application. SE
83 described by Hoerl and Snee i3 & more genersl concept. Statistical engmeerimg is also & name
associated with the Shamin Red X problem-solving system (Shainim 199321, Sheinin, R. D. { 1993 ).
Strategics for techmical problem solving . Quality Engineering , 5(3 ). 433 - 448,

Flaxhe & Fragcia-Oialing]

View gll refeences). The StatBng algorithm builde on some of the idess m the Shamin systern.

Whete docd statistics come in then? What is it purpose? We recommend that you take the broad view of
the discipline of statistics that provides the concepts, msthodologies, tactics, and tools for empirical
leaming. Note that learring 18 the key wond m the previous sentence. The purpose of statistics is to leam,
m cither an exploratory or confinmatory sense. Empirical means by obscrvation or experiment; that is, we
leam about the process by watching it without intervention (obeervational), after changing one or more
mpuis {¢xperimental) or some combmation of the two. Because applying statistics is inductive, learnimg
from an empirical investigation iz often imperfict; that is, we are left with some uncertamty.

Comaistent with the principles of statistical thinking, Deming prrportedly said, “If vou can't describe
what you are doing a4 a process, you dom't know what you're deing.” We believe that there in great value
in also applying procesy thinking to the planning and execution of any empirical investigation (L.e.,
wtatistica). At a high level, we suppest the fve step process called QPDAC. The steps of QPDAC are ag

hilpotyrwn Sandionl | mecormAdobful 1110, 1080DBDEE 12 201 124080 ™
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follows:

Question: Specify what you are trying to learn.

Plan: Formulate what, when, and how you will collect the data.

Data: Execute the plan.

Analysis: Examine the data in light of the question and plan.

Conclusion: Specify what has been learned with limitations (uncertainty, deviations from the plan, etc.).
See Steiner and MacKay (200524. Steiner , S. H. , MacKay , R. J. (2005 ). Statistical Engineering: An
Algorithm for Reducing Variation in Manufacturing Processes Milwaukee , WI : ASQ Quality Press .

View all references) and MacKay and Oldford (200018. MacKay , R. J., Oldford , R. W. (2000 ).
Scientific method, statistical method and the speed of light . Statistical Science , 15 : 254 — 278 .
[CrossRef], [Web of Science ®]

View all references) for the details of each process step. QPDAC provides a process framework for
carrying out (or criticizing) any empirical investigation.

Now we have the elements to discuss SE in the context of variation reduction. We will apply an
algorithm such as DMAIC or StatEng. Our first conclusion is that it is better practice to use a sequence of
empirical investigations rather than a single investigation. In most applications, it is a recipe for disaster
to use a single investigation to try to identify the cause(s) of variation and, at the same time, to try to find
a remedy that reduces or eliminates the effects of the causes. We look to George Box for support. The
use of statistical tools to solve nontrivial problems requires “sequential learning” as described in Box
(19995. Box , G. E. P. (11999 ). Statistics as a catalyst to learning by scientific method part [I—A
discussion . Journal of Quality Technology ,31:16 —29 .

[Web of Science ®]

View all references) and Box and Liu (19997. Box , G. E. P., Liu, P. Y. T. ( 1999 ). Statistics as a
catalyst to learning by scientific method part [——An example . Journal of Quality Technology ,31 : 1 —
15.

[Web of Science ®]

View all references). The main theme of these two papers can be summarized as “Investigations are
conveniently conducted sequentially with results from previous experiments interacting with subject
matter knowledge to motivate the next step”(Box, 19995. Box , G. E. P. ( 1999 ). Statistics as a catalyst
to learning by scientific method part [I—A discussion . Journal of Quality Technology ,31 : 16 —29 .
[Web of Science ®]

View all references, p. 27).

In Box's view, too much emphasis in statistics has been given to “one-shot” procedures, such as
hypothesis testing and optimal designs that follow a mathematical paradigm. He felt instead that there
should be more studies of statistics from a dynamic point of view. The focus on the mathematical
paradigm can be partly explained by the relative ease of deriving mathematical results and many
statisticians’ mathematical training.

Box and Liu (1999) also noted that in the context of process improvement, there is often immediacy.
That is, we can apply QPDAC to get the results of any investigation in a relatively short time frame so a
sequence of investigations is feasible. The same may not be true in other contexts such as agriculture,
medicine, engineering, and so on.

A famous historical example of the successful application of sequential empirical learning (and SE) is the
Wright brothers’ development of a heavier-than-air fixed-wing manned airplane in the years leading up
to their maiden flight in 1903. The Wright brothers experimented extensively, looking for an effective
way to control flight and design wings that provided sufficient lift. They employed many tools/methods
including kites mounted on bicycles, a rudimentary wind tunnel, and gliders both tethered and manned.
The brothers tested over 200 wing designs in their wind tunnel and conducted hundreds of unmanned and
manned glider flights before they felt ready to tackle actual flight. Along the way they learned a lot but
also suffered many setbacks. They even discovered an error in the assumed value of a physical constant,

http://www tandfonline.com/doi/full/10.1080/08982112.2013.846069 8/31
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called the Smeaton coefficient of air pressure needed to calculate the expected lift from a particular wing
design. The Wright brothers ultimately succeeded in part due to their use of empirical learning. Other
better funded teams such as one led by Samuel Langley failed when following a much more theory-based
approach. SE could have helped the brothers to reach their goal more quickly.

One well-developed application of SE is response surface methods (RSM) as initially proposed by Box
and Wilson (19518. Box , G. E. P., Wilson , K. B. ( 1951 ). On the experimental attainment of optimum
conditions (with discussion) . Journal of the Royal Statistical Society, Series B, 13 : 1 —45.

View all references) and summarized by Box and Draper (20076. Box , G. E. P., Draper , N. (2007 ).
Response Surfaces, Mixtures, and Ridge Analyses. , 2nd ed . New York : John Wiley & Sons .

CrossRef]
View all references). Using RSM we conduct a series of experiments to try to optimize an objective
function defined in terms of process outputs. With RSM, there is explicit use of initial experiments to
drive further investigation. We may start with a highly fractionated two-level screening experiment that
looks for inputs (factors) with large main effects. This is followed by further factorial experiments
(possibly with center points) with higher resolution using promising factors found in the screening
experiments. The results are then used to suggest promising areas of the design space (in terms of
optimizing the objective function). Further experiments are conducted with new levels in the direction of
steepest ascent (or descent). As needed, these designs are augmented with axial points to examine
nonlinear and interaction effects.
The purpose of this article is to illustrate the important advantages and surprising consequences of using
sequential empirical investigations (and learning) within a variation reduction algorithm such as DMAIC
or StatEng. In our experience, Six Sigma books and training material make few connections between and
within the stages of DMAIC. There is no explicit use of information from previous stages to help
complete the current stage. For instance, in the well-known Six Sigma book by Breyfogle (19999.
Breyfogle , F. W. , III. ( 1999 ). Implementing Six Sigma. Smarter Solutions Using Statistical Methods
New York : John Wiley &Sons .

View all references), few of the examples refer to anything learned in a previous stage of DMAIC. This
is especially strange when moving from the analysis to the improvement stage; you would think that
knowing the cause would be helpful when looking for a remedy.

To illustrate, we consider a case study that follows an improvement team through a project to reduce
variation in the crossbar dimension of a plastic switch base. We show how the knowledge gained early in
the improvement project drives and influences the choices made later on. The new knowledge impacts
fundamental details such as sampling plans, when and what to measure, etc., of subsequent
investigations. Here we focus on the use of information gained in a baseline investigation conducted (in
part) to assess the magnitude of the problem at the start of the project.

The article is organized in the following manner. In the next section, we outline the importance and the
use of the knowledge gained in the baseline investigation to help plan and analyze subsequent
investigations. Next, we discuss an appropriate plan and analysis of a baseline investigation that takes
into account the proposed uses. This is then followed by a series of sections that illustrate the use of the
knowledge gained in the baseline investigation to assess a measurement system, find the dominant
cause(s) of the variation, verify the identified dominant cause, and assess the feasibility of various
variation reduction remedies. We conclude with a summary and some additional discussion.

BASELINE INVESTIGATION

Jump to section

http://www tandfonline.com/doi/full/10.1080/08982112.2013.846069 9/31



29/2/2016 Statistical Engineering and Variation Reduction - Quality Engineering - Volume 26, Issue 1

INTRODUCTION

BASELINE INVESTIGATION

PLANNING AND ANALYZINGA...

USING THE BASELINE TO HELP CHECK THE...
USING THE BASELINE TO HELP SEARCH FOR A...
USING THE BASELINE TO HELP VERIFY A...
USING THE BASELINE TO HEL.P ASSESS THE...
SUMMARY AND DISCUSSION

ABOUT THE AUTHORS

Establishing a baseline is the first step in most variation reduction algorithms. For example, it is one of
the necessary activities in the measure stage of DMAIC in Six Sigma (Breyfogle 19999. Breyfogle , F.
W., IIL. (1999). Implementing Six Sigma: Smarter Solutions Using Statistical Methods New York : John
Wiley &Sons .

View all references). It is also the first stage of the StatEng algorithm (Steiner and MacKay 200524.
Steiner , S. H. , MacKay , R. J. (2005 ). Statistical Engineering: An Algorithm for Reducing Variation in
Manufacturing Processes Milwaukee , WI : ASQ Quality Press .

View all references) illustrated in Figure 2.

We define the baseline as a numerical and graphical summary of the current process performance. In
other words, the baseline quantifies the size and nature of the process variation. The baseline may come
from data previously collected such as weekly scrap rates or stored values from an end-of-line 100%
inspection. However, in many instances, we may decide to carry out an empirical investigation to
establish the baseline.

We propose to use the baseline to help

e set the goal—i.e. determine how big a reduction in variation is required,
¢ validate a potential solution if and when one is found; and
¢ plan and analyze subsequent investigations when searching for a cause or a solution.

The first two uses are commonly acknowledged. However, it is our contention that, unlike most current
practice, the information gained in the baseline can be exploited in planning and analyzing subsequent
investigations designed to gain the process knowledge necessary to meet the project goal. Some may
argue that this is common sense; we should always use any prior information as a guide; that is, use
sequential learning when planning any investigation. However, in our experience, mistakes and
oversights are common in practice. In addition, explicitly acknowledging the intended use of the baseline
suggests a particular plan for the baseline investigation itself. We give our recommendations in the next
section.

We use the StatEng algorithm (Figure 2) to illustrate the benefits of using the baseline information in
variation reduction. We hope that in the future project teams will make more systematic use of the
baseline information and achieve better results in less time.

Here are some details about the case study. In the manufacture of the injection-molded plastic base
shown in Figure 3, there was excessive variation in a key crossbar dimension, measured as a difference
from a nominal value. With rescaling, the target dimension was 1.0 inch and the specifications were 0 to
2.0 thousandths of an inch (thou). Note that thou is often referred to as mil in the United States. In a later
assembly process, many mechanical and electronic components are inserted into spaces in the plastic
base. Problems occurred due to both breakage when spaces were too small and loose assembly when
spaces were too large. The crossbar dimension of the plastic base was used as a surrogate for all of the

http://www tandfonline.com/doi/full/10.1080/08982112.2013.846069 10/31
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internal dimensions. If crosshar dimension was small (large), the spaces were generally too big (small).
The project goal was to reduce variation in the crossbar dimension.

FIGURE 3 Plastic baze showing crosshar dimension with arrow. {Color figure available online.)

PLANNING AND ANALYZING A BASELINE
INVESTIGATION

Jump to section

To determme the bassline, we need an empirical imvestigation to estimaie the long-term properties
{mean, standard deviation, etc.) of the enfical process ouiput(g). For the purpesce of illustration, we
aspumns a single output of interest and that a performmmecs measne 18 given. There arc many feasible
choices for a performance measume—satandard deviation, capabilily ratio, ete. The choice helps to define
the question in QPDAC for thiz mvestigation. If possible, the process output should be a contimmons
rather than & binary characteristic becanse that provides more process mformation per observation. In
addition, we would rather work with an output that has two-sided specification limits and is not already a
measure of vanation itself like out-of-roumdness.

‘We propose a plan for the baseline mvestigation that 13 designed to help progress through the StatEng
variation reduction algorithm (Figure 2). Specifically, to accomplish the goals, the bascline mvestigation
should allow us to

= estimate the long-term performance measure,
» egtimate the full extent of vanation (denote FEoV) m the oulput, and, perhaps most critically,
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e determine the nature of the output variation over time.

We define the FEoV as the range within which the vast majority of output values lie. The range
(minimum to maximum) defines the FEoV when the sample size is in the hundreds and there are no wild
outliers (as in the case study). More generally, for a histogram with a bellshape, the FEoV corresponds to
the range of output values given by the average plus or minus three times the standard deviation. This
way the FEoV covers 99.7% of output values using a Gaussian assumption. To define the FEoV we
ignore rare outliers. For binary and discrete outputs the FEoV is given by all of the output values seen in
normal production.

To accomplish the baseline investigation goals, the sampling scheme is critical. First we must decide
over what time frame we will sample. This study period must capture the long-run performance of the
process characteristic of interest. To help decide, we use any prior knowledge and/or experience about
the process we have. For example, if process performance is already summarized using weekly scrap
rates (but we decide we want a baseline for a continuous output characteristic), we can use the pattern in
the scrap rates to help decide the time frame.

Instead of random sampling, we recommend a systematic sampling plan that includes consecutive parts
and parts sampled from the process at regular time intervals. Such a systematic sampling plan is desirable
because it provides information about the time nature of the output variation. This proposed plan can be
thought of as a multi-vari investigation focused on the time families of variation. See Snee (200122. Snee
, R.D. (2001 ). My process is too variable—Now what do I do?: How to produce and use a successful
multi-vari study . Quality Progress , December : 65 — 68 .

View all references) and De Mast et al. (200113. De Mast , J. , Roes , K. C. B., Does , R. J. M. M. (
2001 ). The multi-vari chart: A systematic approach . Quality Engineering , 13 : 437 — 448 .

[Taylor & Francis Online]

View all references) for more details on multi-vari investigations. In this light, our suggestion for the
baseline investigation is similar to the suggestion in Shainin (199321. Shainin , R. D. ( 1993 ). Strategies
for technical problem solving . Quality Engineering , 5 (3 ): 433 —448 .

[Taylor & Francis Online]

View all references) to start problem solving with a multi-vari investigation. An alternative is to use a
random sample over the proposed time frame and keep track of when each observation is made.

We can describe the nature of the output (or any other process characteristic) variation over time using
the idea of a time family of variation. If the output changes quickly (that is, over a short time frame we
observe values across most of the FEoV), we say that the output variation acts in the part-to-part family.
On the other hand, if the output changes slowly—for example, to see values on both ends of the FEoV
we need to measure parts separated by a long time; for example, days—we say that the output variation
acts day-to-day. By sampling parts consecutively at regular intervals we are able to distinguish between
situations where the output varies quickly (part-to-part) or slowly (say, day-to-day) or somewhere in
between. This information is valuable both to help us choose the time frame for subsequent
investigations and to give us clues about the possible major causes of variation.

In the crossbar dimension example, the team planned and executed a baseline investigation where six
consecutive parts were selected from the process each hour for 5 days. This choice was expected to
provide ample time for the process output to vary over its normal range and give a large enough sample
size to reasonably estimate the process variation. We provide graphical and numerical summaries of the
data in Figure 4. We suggest always using both a histogram and some sort of run chart. The right panel in
Figure 4 gives a multi-vari chart that illustrates how crossbar dimension varies over time. The six
consecutive values each hour are plotted at the same horizontal location. The vertical dashed lines show
the division into the 5 days.

FIGURE 4 Histogram, multi-vari chart, and numerical summary for crossbar dimension baseline data.
(Color figure available online.)

http://www tandfonline.com/doi/full/10.1080/08982112.2013.846069 12/31
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dimension variation is —0.25 to 2.1 thou (as indicated by the dashed lines in subsequent figures) and the
major source of variation actx hour-to-hour with some svidence of day-to-day differences. Mors
formally, we also fitted a nested analysis of variance (ANOVA) modsl. In agreement with the multi-vari
chart, the dommant source of varistion is among hours (with variance component standard deviation
aqual to 0.45). The variation in crozsbar dimension for consecutive parts is small. The standard deviation
of the bazeline data is 0.45 thon. The team set the goal to reduce the standard deviation to less than 025
thow Theve was no immediate explanation for the smaller variation in erossbar dimension observed on
the fifth day Note that had there been a large day effect—that is, had the day averages been very
differemt—the baseline imvestigation was (probably) not eonducted over enough days to capture the long-
term performance. In that case, the team should collect data over some additional days before drawing
conclusions.

One of the goals of the baseline investigation is to sstimate the curment process performance in terms of
ﬂmmﬂpﬂvmahmﬂshnahngamnamnfmﬂmﬂkaa#hﬂuddwmhnnmdﬂﬁcﬂtwﬂhnmnﬂ
sample size. In addition, because of the multitude of usas we make of the results of a basaline
mvestigation, we favor a large bassline sample size, ideally consisting of hundreds of parts for a
continuous output characteristic and thousands of parts for a binary charactenstic.

Due to the time nature of the crossbar dimension variation, the team concluded that the time frame for
fimther observational investigations should bs hours and days. We expect to see the FEoV i the output
over that period Investigations conducted over a shorter time frame, say, only an hour, would not show
the FEoV and thus not reflect the long-term behavior of the process.

One final point about the outcome of the baseline investigation is that we recommend that ssveral parts
with extreme values (L.e., to span the FEoV) be set aside bacause they can be uzeful in subsequent
siudies, such a< the measurement sysiem assessment investigation discussed in the next section.
Next, we illusirate the use of the baseline m subsequent investigations needed at various stages of the
StatEng algorithm.

USING THE BASELINE TO HELP CHECK THE
MEASUREMENT SYSTEM

Jump to section
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After establishing the baseline, the next step in the StatEng algorithm (Figure 2) is to assess the
measurement system for the output. The goal of this investigation is to compare the size of the
measurement variation, denoted. 6 4 , t0 the process variation, denoted 6 ,,pceqs - We want to

determine whether the measurement system is a large source of variation and whether it is adequate to
support further process investigations. If the measurement variation is large, improving the measurement
system is necessary before proceeding with problem solving and may solve the original problem. Note
that for this reason, in many other problem-solving systems, checking the measurement system is often
recommended before we conduct a problem baseline investigation. However, we propose establishing the
baseline first because we use the results from the baseline investigation to help plan and analyze a better
measurement system assessment investigation. This is a small example of SE where reversing the order
of the two investigations can increase efficiency.

A generic plan for measurement assessment is to measure the same parts repeatedly over a variety of
conditions and times. We plan to use the baseline estimate of the overall variation (i.e., the combined
effect of the process and measurement) to improve the precision of the conclusion about the relative size
of the measurement variation. If we assume independence—that is, the part dimension does not affect the

."r 2

+ a2
Jut'rrc:."f - ",‘,-'I J,!}.!'M."{"'l‘,!i E.‘Ht“ci,'{

measurement variation—we have . The measurement investigation will
provide an estimate for 6 ,,,,,, and combining that with the estimate for ¢ ,,,,,; given by the baseline

allows us to solve for 6 o cegs -

In the measurement system assessment investigation, we suggest selecting three parts chosen (from the
baseline) to cover the FEoV for the output observed in the baseline. We select one large, one small, and
one intermediate-sized part. The benefits of choosing extreme parts were explored in more detail by
Browne et al. (200910. Browne , R. , MacKay , R. J. , Steiner , S. H. (2009 ). Improved measurement
system assessment for processes with 100% inspection . Journal of Quality Technology , 41 : 376 — 388 .
[Web of Science ®]

View all references, 201011. Browne , R. , Steiner , S. H. , MacKay , R. J. ( 2010 ). Leveraged gauge
R&R studies . Technometrics , 52 : 294 — 302 .

[Taylor & Francis Online], [Web of Science ®]

View all references), who also proposed a more complicated analysis that incorporates the measured part
size from the baseline investigation used to select the parts. Note the difference from the usual suggestion
in gage repeatability and reproducibility (R&R) investigations for 10 randomly selected parts
(Automotive Industry Action Group 20104. Automotive Industry Action Group . ( 2010 ). Measurement
Systems Analysis. , 4th ed . Southfield , MI : Automative Industry Action Group .

View all references). The traditional gage R&R estimates both 6 ., and 6 ¢ Using only the

measurement investigation data.

In the crossbar dimension example, the three (small, medium, and large) parts were measured nine times
each on two separate days. If the measurement system is a dominant source of the variation, based on
what we observed in the baseline, we expect to see the FEoV within the measurements on each part over
the 2 days. The results are shown graphically in Figure 5 and the one-way ANOV A numerical results are
provided in Table 1

FIGURE 5 Crossbar dimension measurement investigation results. Dashed horizontal lines show the

http://www .tandfonline.com/doi/full/10.1080/08982112.2013.846069 14/31
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output FEoV from the baseline. (Color figure available online.)
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FIGURE 6 Effect of baseline size (b) on the precision of the estimator for y where
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FIGURE 7 Reduction in variation if we remove a cause contributing a given proportion of the overall

variation.
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TABLE 1 One-way ANOVA: Dimension Versus Part
CSVPDEDisplay Table

In Figure 5 we added horizontal dashed lines to show the output FEoV(—0.3 to 2.1) seen in the baseline.
Later we continue this suggestion and always include lines showing the FEoV in all plots of individual
output values. This practice helps ensure that the plots are interpreted in an appropriate way when we
want to try to explain the FEoV as seen in the baseline. In this investigation, because we deliberately
selected extreme parts from the baseline, we will always see the FEoV. However, this is not necessarily
true with other investigations. Because the measurement assessment investigation repeatedly measured
parts, the error variance in the ANOVA corresponds to measurement error. Thus, from the ANOVA, we

= /0.020 =0.14

G roas .
find ~ "M (given by the pooled SD or the square root of the mean squared error).

. . . . ' .
The estimated baseline standard deviation was ~ “"“"/'=0.45. Thus, we estimate

G rocess = V0.452 — 0,142 = 0.43 o ,
' . Because the measurement variation is small relative to the
process variation, we conclude that the measurement system is adequate for the project. The system can
distinguish between the three parts and the measurement variation is relatively small. Some may
complain that, unlike with traditional measurement assessment studies, our investigation was conducted
over two separate days rather than as quickly as possible. At the time the measurement investigation was
conducted, we spread the investigation out over many hours because the baseline investigation results
suggested that this was needed to generate the FEoV. However, we now realize (continuous
improvement) that conducting the measurement assessment investigation as quickly as possible is
preferred because we do not need to worry about generating the FEoV in the measurement investigation
if we select extremes parts from the baseline (as we have done). We could clarify this idea by adding the
initial measurements for each part with a special symbol to a plot like Figure 5.
The proposed assessment plan is different than the traditional gage R&R investigation (Automotive
Industry Action Group 20104. Automotive Industry Action Group . ( 2010 ). Measurement Systems
Analysis. , 4th ed . Southfield , MI : Automative Industry Action Group .

View all references) with 10 randomly selected parts measured four to six times each. We can use fewer
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parts in our investigation because we have an estimate of the overall variation from the earlier baseline
investigation. The benefit of the proposal can be quantified as in Stevens et al. (201028. Stevens , N. ,
Browne , R., Steiner , S. H. , MacKay , R. J. ( 2010 ). Augmented measurement system assessment .
Journal of Quality Technology , 42 : 388 — 399 .

[Web of Science ®]

View all references and 2013) using the asymptotic precision of the estimator for

)
{ .
P —

{7l o
V) O meas /Gm"{'mi!

)

obtained as a linear approximation from the Fisher information. In Figure 8 we
compare the approximate standard deviation of the estimator for y (when the true value is 0.2) for three
different plans defined in terms of (k, n) where & represents the number of randomly selected parts and »
is the number of repeated measurements per part. The three selected plans all have a total of 60
measurements and correspond to a plan similar to the one used in the case study; that is, (3,20), the
standard gage R&R plan (10,6), and the plan (30,2) proposed by Shainin (199321. Shainin , R. D. ( 1993
). Strategies for technical problem solving . Quality Engineering ,5 (3 ): 433 —448 .

[Taylor & Francis Online]

View all references). Our proposed measurement assessment plan and analysis will provide slightly
worse results than shown in Figure 8 for the (3,20) plan because we did not select the three parts at
random. However, if we adopt the more complicated analysis proposed by Browne et al. (200910.
Browne , R. , MacKay, R. J., Steiner , S. H. ( 2009 ). Improved measurement system assessment for
processes with 100% inspection . Journal of Quality Technology ,41 : 376 —388 .

[Web of Science ®]

View all references, 201011. Browne , R. , Steiner, S. H. , MacKay, R. J. ( 2010 ). Leveraged gauge
R&R studies . Technometrics , 52 : 294 — 302 .

[Taylor & Francis Online], [Web of Science ®]

View all references) that incorporates the baseline part measurements, we can do substantially better. In
addition, selecting extreme parts will make it easier to assess the model assumption that measurement
variation does not depend on part size.

FIGURE 8 Scatterplots of crossbar dimension by hydraulic pressure and barrel temperature. Dashed
horizontal lines show the FEoV from the baseline.
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From Figure 8 we see that when there is no baseline data (i.e., b = 0) the Shainin plan has the lowest
standard error at about 0.035. However, as we add baseline information the proposed plan with only three
parts quickly becomes the best one. With a baseline sample size of b = 240 (just off the right-hand edge
of Figure 8) the proposed measurement investigation should have a standard error of a little more than
0.02, which is less than half as big as using the traditional gauge R&R plan with no baseline data that has
a standard error of more than 0.45. In summary, Figure 8 shows the substantial benefits of the baseline
information (for all plans) and how for a reasonable baseline size (say, greater than 50 parts) the
proposed plan with three selected parts measured 20 times each is the best. We see similar results for
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other values of y.
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Following the diagnostic and remedial journey (Juran and Gryna 198017. Juran, J. M., Gryna , F. M. (
1980 ). Quality Planning and Analysis. , 2nd ed . New York : McGraw-Hill .

View all references), the next step in the StatEng algorithm is to identify one or more dominant causes of
the variation. A dominant cause is a process input that, if held fixed, would substantially reduce the
variation in the output. Assuming independence, we can partition the variation in the process output into
two parts:

7 2
Jm‘cl'ull_\/ T due 1o specilic cause + P due 10 all other causes

We discussed a special case of this formula in the measurement assessment section. The notion of a
dominant cause uses the Pareto principle applied to causes (Juran and Gryna 198017. Juran, J. M. ,
Gryna , F. M. (1980 ). Quality Planning and Analysis. , 2nd ed . New York : McGraw-Hill .

View all references). For a dominant cause, the residual variation—that is, 64y to all other causes —MUSt

be relatively small; that is, 6qye to all other causes <<Odue to specific cause- F1gure 9 shows the percentage

reduction in the overall variation possible if we eliminate the contribution due to a specific cause. We see
that little improvement is possible unless we reduce the contribution of a cause that is dominant. For
instance, suppose that we find a cause that accounts for half the overall variation (on the standard
deviation scale). Then, in the unlikely event that we are able to completely eliminate the effect of this
cause, we reduce the overall variation by only about 14%. Figure 9 also suggests that if the problem is
defined by multiple large causes and not a dominant cause it will be more difficult to solve. In such cases
we will need to address a number of large causes to make a substantial difference and it will be much
more difficult to identify any large cause due to the masking effect of the other large causes.

FIGURE 9 Barrel temperature dominant cause verification experiment results. Dashed horizontal lines
show the FEoV from the baseline. (Color figure available online.)
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» The results of & baseline investigation can be used to eliminate many inputs as suspect dominant
cayses becayse we determined the contribution of some time families to the output variation, If a
dominant cause exists, it must act in the time family that ig the largest sonurce of variation. For
instance, if the cutput varies slowly (say, hour to hour), then any input that chenges from part to
part cannot be g dominant camse,

» The baseline suggests a time frame for the plan of any observational investigation designed to look
for a dominant cause. We want to collect data over a long encugh time period (or in such a way) to
be sure that the dominant cauze acts during the investigation.

» We can use the FEoV to check that the dominant cause has acted during the investigation, There ia
no sense in finding canses that explain only a amall part of the outpart variation, If the outpart
variation in an investigation does not closely match the FEoV geen in the baseline, we conchude
that the dominant canse did not ect, Then, it is not possible to generate strong clues about the
identity of the dominant cense using the investigation results,

In the case shudy, what clues about the dominant cause are provided by the hazeline investigation? We
know that the dominant cause must vary the same wey over time as the cutput croasber dimension, The
dominant cause is thus not an input thet varies quickly, say, part-te-part, such as cavity or mold number,
Otherwise, we would not have seen the pattern of variation in the crosshar dimengion in the right panel of
Figure 4,

Ta search for a dominant canse, the team planned an investigation where they measured five varying
inputs and the crosshar dimengion on 40 parts haphazardly selected over a 2-day period, The five inpute
were all thought to be poszible zubstantial canses and all varied to match the pattern observed in the
bageling; thet is, all five inputs were expected to vary over hours, The investigation was conducted over 2
days because the baseline investigation suggested that we should see the FEoV within that time,

The input—output invegtigation results are summarized uging the two scatterplots of an input versus the
crosshar dimeansion outpat given in Figure §. The plots for the remaining three inputs showed no pattern;
that is, they looked gimilar to the left panel of Figure §. In the scatterplots, the horizomtal dashed lines
give the FEoV sgen in the haseline, First, we conclude that the dominant canse acted in the investigation
because variation in the crossbar dimension seen in the 2 days of sampling waz close to the FEoV.
Second, we see that barrel temperature is a strong suspect for the dominant cause, If we could hold barrel
temperatyre fixed, (it appears) that there would be much legs veriation in crosshar dimengion, The other
four inputs were eliminated as posgible dominant causes. Note that at this point we could fail to find a
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dominant cause if it is measured with large measurement variation. We should ideally check the
measurement systems for all inputs (suspected dominant causes) in a way similar to the measurement
assessment investigation for crossbar dimension we conducted earlier.

Note the contrast between the observational studies and the typical brainstorming and screening
experiment approach suggested in many implementations of Six Sigma (Breyfogle 19999. Breyfogle , F.
W., L (1999 ). Implementing Six Sigma: Smarter Solutions Using Statistical Methods New York : John
Wiley &Sons .

View all references). Observational plans are preferred because they are usually cheaper and easier to
conduct than an experimental investigation where we must select, and deliberately set, one or more
(normally varying) process inputs. We suggest using an experimental plan, as described in the next
section, to verify the dominant cause only after we have generated as many clues as we can about the
dominant cause with simpler and cheaper investigations.

Here we illustrated searching for a dominant cause using only an input—output investigation. There are
many other types of investigations that can be useful, including disassembly-reassembly and component
swap (offline) experiments, group comparison, and other simple stratification investigations (Steiner and
MacKay 200524. Steiner , S. H. , MacKay , R. J. (2005 ). Statistical Engineering: An Algorithm for
Reducing Variation in Manufacturing Processes Milwaukee , WI : ASQ Quality Press .

View all references). As a rule, the aim of these investigations is to use time or location families (groups)
of causes to narrow down the list of possible suspect dominant causes. Each new investigation is planned
using the knowledge gained from all of the previous investigations until we (hopefully) identify a single
(or small number) of remaining suspect(s). This employs the “method of elimination” popularized by
Dorian Shainin (Shainin 199321. Shainin , R. D. ( 1993 ). Strategies for technical problem solving .
Quality Engineering ,5 (3 ): 433 — 448 .

[Taylor & Francis Online]

View all references; Steiner et al. 200826. Steiner , S. H. , MacKay , R. J. , Ramberg , J. S. (2008 ). An
overview of the Shainin System™ for quality improvement (with discussion) . Quality Engineering , 20 (
1):6-19.

[Taylor & Francis Online]

View all references) that is another example of SE and should be the subject of further research. In each
investigation we use the baseline knowledge in the same way as for the input—output investigation. We
use the output time family to help decide on an appropriate time frame and the observed FEoV to check
that the dominant cause acted in the investigation. Note that the crossbar dimension case study is not a
good example of applying the method of elimination because we use only a single investigation, rather
than a series of investigations, to find the dominant cause.

USING THE BASELINE TO HELP VERIFY A SUSPECT
DOMINANT CAUSE
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We want to be sure that the suspected dominant cause(s), here called a suspect, is dominant before
moving to the remedial journey. We need to verify the suspect because in the search for the dominant
cause using observational studies, we might have inadvertently ruled out a family of causes that contains
the dominant cause or been misled by confounding. To verify that a suspect is a dominant cause, we use
an experimental plan (if feasible) where the value of one or more suspects is deliberately manipulated. A
verification experiment should only be considered when we have a single or only a small number of
remaining suspects. That is, a verification experiment should only be used to verify clues previously
attained and not to search for the dominant cause.

We also use the baseline information to help plan and analyze the verification experiment. The time
nature of the output variation in the baseline helps us to

e define an experimental run,
e determine the importance of replication (i.e., choosing the number of runs), and
e determine the importance of randomization to reduce the risk of confounding in the experiment.

To draw conclusions, we compare the output variation observed in the verification experiment to the
FEoV. Note that we are not primarily concerned with statistical significance. The range of values for the
suspect dominant cause seen in regular production should generate (close to) the FEoV in the output if it
is a dominant cause. We first illustrate these ideas using our motivating example and then draw general
conclusions about how to use the baseline information when verifying a dominant cause.

In the case study, the team concluded that barrel temperature was a suspect dominant cause. They
decided that verification was necessary because it was possible that, in the earlier observational
investigation, barrel temperature may have been confounded with the real dominant cause (that was not
measured).

To verify barrel temperature as the dominant cause, the team planned a simple two-level experiment.
They chose the low and high levels for barrel temperature as 75 and 80°C to cover the range of barrel
temperatures seen in the input—output investigation (see Figure 6). Barrel temperature was difficult to
hold fixed in normal production but could be controlled for an experiment. The verification experiment
was conducted with only two runs, one at each of the selected barrel temperatures. For each run, the
barrel temperature was set, 25 parts were made to ensure that the temperature had stabilized, and the next
10 parts were selected and measured. Then, barrel temperature was changed as quickly as possible for the
second run. Using design of experiments terminology, the experiment consisted of two runs with 10
repeats per run and no replication.

We see from the experimental results in Figure 7 that barrel temperature had a large effect on crossbar
dimension relative to the baseline variation. The team concluded that they had verified barrel temperature
as a dominant cause of crossbar dimension variation. The small number of runs and lack of
randomization was not a major concern. The earlier investigations had shown that the dominant cause
acted in the hour-to-hour family and, thus, over the 30 minutes needed to conduct the verification
experiment, the team felt that it was very unlikely that they would have seen the FEoV in crossbar
dimension unless barrel temperature was a dominant cause. In other words, they concluded that there was
insufficient time for other causes in the hour-to-hour family to change substantially during the
experiment. This suggests that during the verification experiment barrel temperature could not have been
confounded with any other reasonable suspect.

We now draw some general conclusions about conducting verification experiments. Assuming that the
verification experiment can be conducted in a short time, if the dominant cause acts over a long time, as
in the crossbar dimension example, we do not need to worry about confounding in the verification
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experiment. Other causes in the same time family as the suspect will not have time to vary substantially
during the verification experiment. As a result, the experimental principles of replication and random
assignment are not critical. On the other hand, if the dominant cause acts over a short time, we do need to
worry about possible confounding between the suspect and other inputs in the same time family in the
verification experiment. Then, in this case, we need a verification experiment that utilizes sufficient
replication (i.e., many runs at each of the two levels of the suspect) and random ordering to control the
risk of confounding.

USING THE BASELINE TO HELP ASSESS THE
FEASIBILITY OF A VARIATION REDUCTION APPROACH
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As suggested in Figure 2, there are seven possible approaches to reducing variation: fix the obvious,
desensitization, feed forward control, feedback control, robustness, 100% inspection, and moving the
process center. More details on these approaches are given in MacKay and Steiner (1997-199819.
MacKay , R. J., Steiner, S. H. ( 1997-1998 ). Strategies for variability reduction . Quality Engineering ,
10:125-136.

[Taylor & Francis Online]

View all references). We can use the time nature of the output variation from the baseline to help assess
the feasibility of some of these variation reduction approaches. For instance, if the output FEoV is seen
over a short time, feedback control is not feasible because any observed output values provide only a
poor prediction for future values.

To reduce variation, we must make some appropriate change to the process. We can add, remove, or
change a processing step (inspection, controller), change some normally fixed input, or apply the StatEng
algorithm upstream to reduce variation in the identified dominant cause. Here we look at improving a
process by changing the level of one or more normally fixed inputs. Because the input is normally fixed,
we will need an experiment to find the appropriate fixed input(s) to change and its best level. The
baseline information is useful to help plan and analyze subsequent experiments designed to determine
whether an approach is feasible and/or how to implement a particular approach. The time nature of the
output variation seen in the baseline can help define a run. Generally, for experiments conducted to check
the feasibility of a variation reduction approach, we want each run to resemble a mini baseline
investigation; that is, we want each run to provide an estimate of the long-term behavior of the process
with the process changes specified by the factor levels in the run. This suggests, for instance, that if the
output FEoV is seen over a long time, the robustness approach (as defined in Steiner and MacKay
200524. Steiner , S. H. , MacKay , R. J. (2005). Statistical Engineering: An Algorithm for Reducing
Variation in Manufacturing Processes Milwaukee , WI : ASQ Quality Press .

View all references; see also the upcoming example) is likely not feasible because each run in a
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robustness experiment would need to be conducted over too long a time frame.

In the crossbar dimension example, the team decided that the obvious solution of reducing variation in
the barrel temperature was too expensive and difficult with the existing process. Instead, they hoped that
they could change the process in some other way to make it less sensitive to the variation in barrel
temperature. The team then noticed the nonlinear relationship between barrel temperature and crossbar
dimension in the right panel of Figure 6. As a result, they decided to raise the barrel temperature set point
(average) to make the process less sensitive to barrel temperature variation. Afterwards it was
straightforward to adjust the crossbar dimension average (downward to compensate for the increase that
resulted from increasing the barrel temperature setpoint) by changing another normally fixed process
input. However, when validating the solution, they discovered that while the crossbar dimension
variation was reduced substantially, the higher barrel temperature setpoint resulted in an increase in the
frequency of a mold defect called burn. The burn problem arises when the barrel temperature, which will
still vary, is too high. The team decided to retain the crossbar dimension solution they worked hard to
find and attack the burn defect as a new problem. Investigating further (details not shown here), they
showed that the dominant cause of burn acted in the part-to-part family, but the specific dominant cause
was not found. They suspected that the defect occurred due to variation in filling of the mold. Next the
team decided to try to make the process robust to the unknown dominant cause(s) of the burn defect.

To look for a solution to the burn problem, the team planned an experiment with four factors that are
normally fixed inputs: injection speed, injection pressure, back-pressure, and screw speed (rpm). These
factors were selected because of their influence on fill speed and other potential dominant causes in the
part-to-part family. They selected two levels for each factor as given in Table 2. Just for the experiment,
the team planned to classify burn on each part into one of four categories of increasing severity. Levels 1
and 2 were acceptable, whereas levels 3 and 4 resulted in scrap. Using a single rater and boundary
samples (i.e., photos of plastic bases at the agreed-upon boundaries between the burn levels), the team
felt that this measurement system would add little variation. A full baseline investigation with the new
burn classification system was not conducted, but because burn levels 1 through 4 had been seen in the
earlier investigations, that gave the FEoV.

TABLE 2 Factors and levels for the burn robustness experiment

CSVPDEFDisplay Table

The team selected a fractional factorial experiment with eight runs as given in Table 3 Because there was
no proper baseline investigation for the new burn problem, the team assigned the labels A, B, C, and D to
the factors so that one of the treatments (treatment 5) corresponded to the current process settings.

TABLE 3 Experimental Plan and Data for the Burn Robustness Experiment

CSVPDEFDisplay Table
In the resolution IV design, pairs of two-factor interactions are confounded, as given in Table 4.

TABLE 4 Robustness Experiment Aliasing Structure

CSVPDEFDisplay Table
The team defined a run as five consecutive parts. Because they knew from the baseline that the time
family of variation containing the dominant cause (of burn) was part-to-part, they hoped that the
dominant cause would act within each run in the planned robustness experiment. Deciding to use only
five parts for each run was a great risk. Having more parts would have made it more likely that each run
would reflect the long-term behavior of the process but would have cost more time and money. Each run
was carried out once the process stabilized after changing the values of the factors. The order of the runs
was randomized. The results from this robustness experiment are given in Table 3.
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We plot the individual burn scores against treatment yumber in Figure 10, Because the data are discrete,

we add jitter in the vertical direction, Examining the results, we see that treatmentis 2 end 3 are promising
and ook much better than the exigting process performance ag given by treatment 5, It ig & bit worrigome,
but not surprising given the run size, that we did not see the FEoV (scores from 1 io 4) in the treatment 5
nn.

FIGURE 10 Burn by treatment plot for bum robusiness experiment with added vertical jitter,

i . L]

burn

1'= [ ] | | . ] [ ]

1 2 3 4 5 6 T 8
lFEEItI"I’IEI'It

ﬂeﬁmu&dwbmuhpaﬁmmmmfmﬁefmﬂmﬂmaﬂh&k&dfmpmms
settings thet made the performance measure as small as possible. We can think of this as

variation in the burn score about the ideal score of zero. Fitting a full mode] with all possible effects (four
main ang three two-way interactions) we get the Pareto plot of the effects for the average bum score in
Figure 11. Note that in Figure 11 the factor labels erbitrarily show only the first of the pairs of aliased
effects as given in Table 4, We see that only factor C (back-pressure) has a large effect. In drawing this
conchusion the team asgumed that the three-input interaction (ABD) aliazed with C was negligible,
Checking Table 3 we see that low level of back-pressure gives less bum on average than the high level
and] that the results appear better than the baseline for the existing process, The team decided to address
the burn defect problem by reducing the back-pressure to 75 and leaving the other fixed inputs at their
FIGURE 11 Pareto plot of input effects on everage bum score,
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Pareto Chart of the Effects

(response is lower is, Alpha = _10)

A Injectio
B: injectio
C: back pra
D screw mp

W:mndmhemﬁﬂdramgmnchmmﬁnmtheﬂpmmmtdﬂmmdmlmkforamady We wani
to select new settings for one or more of the experimental factors that resulis in better performance then
we saw in the baseline, We are not simply looking for a significantly large effect in the experiment, If
other settings had been very poor, then a factor might be significant even it both levels reanlt in a process
thet is worse than the current process settings. The baseline resutts again provide the appropriate
comparison, We could have added the horizontal lines showing the baseline FEoV for burn to Figure 10,
thongh here it does not help much becanss the oufpwt has only four possible valnss,

Suppose that the team had been able to identify the dominant cause of bum that acts in the part-to-part
femily. Then, if that cause could be controlled in an experiment, but not eagily in the reguler process, it
would make sense to use a desengitization rather than a robustness experiment (Steiner and MacKay
200524, Steiner , 5. H, , MacKay | R. 1. ( 2005 ). Statistical Engineering: An Alporithm for Reducing
Variation in Manufacturing Processes Milwaukee , W1 : ASQ) Quality Press .

View all references). The goal of the desensitization experiment is the same as in the robustness
experiment, namely, we want to gee whether changing the level of ene or more fixed inputs can make the
process less sengitive to veriation in the dominant cause. However, with a desensgitization experiment the
team would deliberately manipulate both of the dominant ceuse(s) and the candidete fixed inputs, In this
way, with the desengitization experiment, we observe the variation due to the dominant cense acting
explicitly rather than implicitly as with the robustness experiment. This will make finding a better
process (if one exists) easier and more reliable becemse we no longer have to rely on the five repeats to
provide a measure of the process variability. As a side point, note that knowledge of the dominant cause
mey algo have suggested other (better) choices for the experimental factors (fixed inputs) than given in
the example, For further comparison of robustnes and desensitization experiments see Asilahijani et al,
(20103, Agilahijani , H. , Steiner , §. H, , MacKay , R. J. ( 2010 }. Reducing Variation in an Existing
PmcmWﬂhRubusthm:terDesign.QmﬂwEugbxwﬁg,zz:Bﬂ—ﬁ.

[Taylor & Francis Qnline]

¥Yiew all references).

To finizh the project, the team conducted a validation investigation with the new process gettings. They
produced 30 parts over a mumber of hours and measured both the croasbar dimengion and the bym
defect score, The standard deviation of the crosshar dimengion was 0.23 thon and only two parts were
scrapped. for the bumn defect. The team recommended the new settings for the back-pressure end the
target barrel temperature that resulted from investigating the two problems,
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In SE, we look for better ways to use statistics to achieve a specified goal. In the important context of
variation reduction (using DMAIC or StatEng) of existing medium- to high-volume processes we suggest
that starting with a well-designed baseline investigation is an improvement over most current practice.
We showed how the results of the baseline investigation can be of great help in subsequent
investigations, first looking for a dominant cause of the variation and then looking for the remedy. The
key feature of the proposed baseline investigation is the recommendation to sample parts from the
process systematically over time. From the baseline data we quantify the magnitude of the problem,
determine the FEoV in the output, and the time nature of the output variation.

The baseline knowledge is helpful in the planning and analysis of subsequent investigations to

e assess the measurement system,

e search for and verify a dominant cause,

e assess a variation reduction approach (i.e., search for a solution), and
e validate a proposed solution.

To meet these goals, the baseline investigation should consist of a reasonably large sample size (e.g.,
hundreds of observations for a continuous output) so that we can well quantify the output FEoV and
standard deviation. We also recommend that the baseline investigation use a systematic (rather than
random) sampling plan that allows us to identify how the output variation acts over time. The time nature
of the output variation is valuable information to help plan subsequent investigations. It can be used to

e choose an appropriate study population time frame;
e generate clues about the dominant cause of variation;

e help define a run, assess the risk of confounding, and determine the importance of the experimental
principles of replication and random assignment in an experimental plan; and

¢ rule out some variation reduction approaches as not feasible.

The estimated performance measure and output FEoV can be used in planning and are useful when
analyzing the results of any subsequent process investigation. We recommend adding lines showing the
baseline output FEoV to all plots that show individual output values. Knowing the FEoV allows us to

http://www tandfonline.com/doi/full/10.1080/08982112.2013.846069 26/31
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e select extreme parts (as in the measurement assessment investigation) that must be generated by
the action of the dominant cause(s),

o directly see whether the dominant cause has acted in an observational investigation, and

¢ determine how the process variation compares to the baseline variation in an experimental
investigation.

In addition, the explicit use of the baseline FEoV in the analysis of subsequent investigations forces
problem solvers to address the important difference between statistical and practical significance. In
problem solving, practical significance is what matters. Comparing results to the baseline FEoV provides
a direct way to determine whether any observed effects are large relative to the baseline variation. Small
effects can be statistically significant while being unimportant. When searching for causes we want to
find the dominant cause(s); that is, an input that explains a lot of the output variation, not one that is only
statistically significant. The issue of practical versus statistical significance is even more critical when we
use experiments to look for a solution. We want to find new process settings that are better than the
current process rather than better than other treatments used in the experiment. One method to alleviate
the concern about drawing inappropriate conclusions from an experiment is to always include a treatment
with the current setting for each of the fixed inputs (though this costs a run).

This article has illustrated how using information gained in the baseline investigation can be effectively
used to better plan and analyze future process investigations. The work has addressed a number of
important issues and suggests many further questions related to how to better run variation reduction
projects, including the following:

e How important is the power/generality tradeoff (De Mast and Lokkerbol 201212. De Mast, J. ,
Lokkerbol , J. (2012 ). An analysis of the Six Sigma DMAIC method from the perspective of
problem solving . International Journal of Production Economics , 139 : 604 — 614 .
[CrossRef], [Web of Science ®]

View all references) in the choice of problem-solving system?

e How important is process stability, as defined by statistical process control?

e What are the consequences if there is no single dominant cause?

e When should blocking be used in the design of an experiment?

e What is the best way to train novice problem solvers to use sequential learning effectively?

Related to the last question, training problem solvers to effectively reduce variation is challenging.
DMAIC and StatEng provide general roadmaps of how to proceed. But there are no specific recipes.
Each application is different. There are always choices concerning what should be done next. Problem
solvers must choose among the numerous available investigation plans, each with their own cost and
likelihood of success. Novice practitioners of StatEng or Six Sigma will find making these choices
difficult. It is clearly so much more than just applying the appropriate tool. Variation reduction involves
conducting a series of investigations, and for each investigation we must choose an appropriate goal,
study population, sample size, inputs to set (and their levels), and/or inputs to measure. In the appropriate
circumstances the advantages of a more targeted variation reduction method are evident. However, even
providing good examples is difficult because each step requires not just describing the goals of the
current investigation but also background on information obtained in earlier investigations. To address
this need we have, over a number of years, developed a virtual manufacturing process, called Watfactory
(Steiner and MacKay 20092S. Steiner , S. H. , MacKay , R. J. ( 2009 ). Teaching process improvement

http://www tandfonline.com/doi/full/10.1080/08982112.2013.846069 27131
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using a virtual manufacturing environment . American Statistician , 63 (4 ): 361 —365 .

[Taylor & Francis Online], [Web of Science ®]

View all references). Watfactory can be accessed through the website

http://www.student.math.uwaterloo.ca/~watfacto/login.htm allows a wide variety of process
investigations and possible remedies.
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Notes

SS: Sum of squares. MS: meansquare.

*Indicates level in current process.

*Treatment 5 uses the current process levels.

Article presented at the First Stu Hunter Research Conference in Heemskerk, Netherlands, March 2013.
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